Google+
Клуб логистов - территория настоящих профессионалов

Библиотека/Закупочная логистика

ABC анализ - преимущества и недостатки

4 июня 2014 » 08:16
ABC анализ - преимущества и недостатки

АВС-анализ тривиален: проводим сортировку и разбиваем на три группы (80%. 15% и 5%, или около того). По этой причине АВС-анализ является одним из самых практических методов. В результате многократного применения метода в разных ситуациях были выявлены его сильные и слабые стороны.

Несколько последних статей я посвятил теме группировки данных. Этот раздел в статистике занимает очень важное место, так как с помощью одних только группировок можно провести достаточно качественных анализ.

 

Статистические группировки можно проводить различными способами. Основные и часто используемые это разделение данных на одинаковые по размеру группы и равные интервалы, а также известный принцип Парето, который лежит в основе не менее известного ABC-анализа. Сегодня разговор об ABC-анализе.

 

С точки зрения строгой математической логики трудно найти более простой метод, чем АВС-анализ (средние величины и индексы не в счёт). Он действительно тривиален: проводим сортировку и разбиваем на три группы (80%. 15% и 5%, или около того). По этой причине АВС-анализ является одним из самых практических методов, и его уже миллионы раз "обкатали" на практике. В результате многократного применения метода в разных ситуациях были выявлены его сильные и слабые стороны. Вот сегодня и поговорим о преимуществах и недостатках АВС-анализа.

Преимущества ABC-анализа

В литературе в подавляющем большинстве случаев описание АВС-анализа сводится к перечислению его преимуществ. Не буду пока отклоняться от традиций. Начнём по порядку.

  1. Простота. Первое и главное преимущество – это простота использования. Чем проще метод, тем он надёжней – это аксиома. Из-за простоты его легко приспособить к различным ситуациям. Обучение также не требует много времени.                                                                                                                                                                                                        
  2. Прозрачность. Это преимущество вытекает из простоты. Чем проще, тем надёжней, но также и понятней. Любой этап анализа можно проследить и, если нужно, подкорректировать. Интерпретация расчётов не вызывает проблем. Сложные статистические методы таким преимуществом не обладают.                                                                                                                          
  3. Универсальность. Еще одно важное преимущество – это почти полная универсальность. С помощью АВС-метода можно анализировать хоть товарооборот, хоть деньги, хоть урожай зерна, хоть что угодно, что можно разделить на составляющие элементы. Перед АВС-анализом все равны. Приоритетность (различие вклада в общий результат) наблюдается почти везде.                                                                                                                                                                                                                                                                                               
  4. Автоматизация. Когда не было компьютеров, все расчеты делались на бумаге и в уме, в лучшем случае на калькуляторе. Поэтому проведение любого анализа было сопряжено с трудоемкостью расчётов. Сейчас эта проблема потеряла свою актуальность. Для АВС-анализа это вообще не проблема, так как алгоритм достаточно строг. Расчёт в Excel можно сделать с помощью нескольких нажатий клавиш. Существует также множество специализированных программ, макросов и приложений, которые сокращают количество нажатий до одного. Короче, АВС-анализ нынче делается быстро. Умножать и делить столбиком уметь не обязательно, про логарифмические линейки и счёты, наконец, можно забыть.                                  
  5. Оптимизация ресурсов. Это фактически назначение метода. Успешное использование АВС-анализа позволяет сократить и высвободить огромное количество временных и трудовых ресурсов. Это достигается путем концентрации работы над наиболее важными элементами и, наоборот, экономия ресурсов на менее приоритетных составляющих.

Недостатки ABC-анализа

Теперь ложка дёгтя в бочку мёда. То, что метод полезный и широко известен, ещё не значит, что его можно вставлять везде, где ни попадя без включения мозгов. АВС-анализ, как и любой другой статистический метод, является инструментом в руках аналитика. Топор сам по себе не рубит, это делает плотник. Аналитическими методами также нужно уметь пользоваться, а не размахивать, круша всё вокруг. О преимуществах рассматриваемого метода можно прочитать на тысячах сайтов, а вот про недостатки и подводные камни надо ещё поискать. Ввиду наличия не всегда очевидных недостатков остановлюсь на них поподробнее. 

 

Первый недостаток, точнее даже ограничение, по моему мнению заключается в том, что классический ABC-анализ – это одномерный метод. Если явление простое и само по себе одномерное, то все замечательно, никаких вопросов. Однако в жизни часто приходится иметь дело с многомерными объектами исследования. Таким образом, как бы не был красив АВС-метод, он отражает только одну сторону явления, группирует только по одному группировочному признаку. Эта проблема не есть очень сложная и решается с помощью использования многомерного АВС-анализа, когда группировка проводится сразу по нескольким показателям. Подробно об этом в специальной статье.

 

Второй недостаток вытекает из первого и из способа его преодоления. Как я только что отметил, приоритетность элементов многомерного объекта следует рассматривать, используя сразу несколько показателей. Для этого определяют группы А, В и С сразу по нескольким переменным. В результате, если мы используем два показателя, то количество возможных групп будет девять. Максимальное число групп определяется количеством возможных сочетаний АВС групп по двум показателям (AA, AB, AC, BA, BB, BC, CA, CB, CC). Вот, как это выглядит схематично на картинке.

 

 

 

 

grupp%205-01

 

 

Каждая ячейка – это группа в двухмерном АВС-анализе. Если элемент попадает в группу СА, то это значит, что по первому признаку он соответствует группе С, по второму – группе А. Если элемент попадает в группу АВ, то по первому признаку – А, по второму – В и так далее. Как видно, всего может быть девять групп. Самые приоритетные позиции находится в группе АА, наименее приоритетные – в СС. Интерпретация всех групп и принимаемые в связи с этим решения целиком и полностью зависят от природы данных и целей анализа. Для трёх показателей количество групп достигает уже 27 (три в кубе равно двадцать семь).

 

Таким обозначением (особенно если групп 3 и более) пользоваться не всегда удобно, и тогда сочетание букв заменяют каким-либо одним (одномерным) рейтингом. Например, все группы, в которых присутствует буква А (AA, AB, AC, BA, CA) заменяют общим рейтингом А. Очевидно, что группы А по первому и второму признакам далеко не всегда будут полностью совпадать. Это значит, что в общую агрегированную группу А попадут уже не 20% пресловутых приоритетных наименований, которые дают 80% результата, а существенно больше. Например, в сводную группу А (состоящую из AA, AB, AC, BA, CA) может попасть 1/3 всех позиций. Это еще ничего. А вот если половина всех элементов? Как видим, правило 20/80 может превратиться в 50/80, что звучит уже не так радостно, а управлять 50% элементами уже не так легко, как 20%.

 

Давайте-ка я приведу пример, а то с этими абстракциями можно совсем загрустить. Имеется ассортимент товаров. Нужно, как обычно сократить стоимость запасов, да так, чтобы продажи не пострадали. Неумелый аналитик сразу проведет АВС-анализ по доходу и скажет, что группу В и С смело сокращаем, а группу А не трогаем. Так ему подсказал учебник. Однако реальность – коварная штука. Представим, что в магазине продаются и дорогие, часто спрашиваемые товары (из группы А), и дешевые, непопулярные (из группы С). Приходит покупатель за дорогим пальто (группа А) и к нему хочет купить запасные пуговицы, заплатку на будущее и новые красивые шнурки в кеды (группа С). Пальто, допустим, имеется в наличии (группа А всегда должна быть), а вот после советов нашего аналитика некоторые позиции из группы С выпали, так как по ним был сокращен запас. В итоге покупатель видит пальто, но не может купить пуговицы и шнурки. Ему теперь нужно ехать в другой магазин – это же огромное расстройство. Такая ситуация называется плохим обслуживанием клиентов, когда покупатель не может приобрести всё, что ему надо. Короче, он психует и уходит из магазина вообще без покупок. Зачем таскать с собой пальто, если его можно купить в другом месте, где будут и пуговицы, и шнурки? Вот и получается, что из-за отсутствия товаров группы С уменьшаются продажи группы А.

 

Для того, чтобы уменьшить количество подобных ситуаций, следует сделать так, чтобы наиболее часто спрашиваемые (не приносящие доход, а именно спрашиваемые) товары всегда были в наличии. Это увеличит качество обслуживания, то есть уровень удовлетворения спроса, и не будет в будущем отпугивать покупателей. В этих целях нужно провести АВС-анализ по частоте покупок (можно анализировать количество расходных накладных или чеков по товарам). Далее по известным алгоритмам отбираются группы А, В и С. В группу А попадут наиболее часто спрашиваемые позиции, они всегда должны быть в наличии. Далее останутся группы В и С, которые имеют меньший приоритет. Если сюда добавить АВС-анализ по доходу, то у нас получится многомерный АВС-анализпо двум показателям: по доходу и по частоте покупок. Для управления запасами можно будет использовать сочетание из двух букв, а можно и заменить общим рейтингом, как было показано выше. Тогда в сводную группу А попадут все товары, которые приносят максимальный доход и/или чаще всего спрашиваются. Поверьте на слово, количество значений в группе А будет существенно больше, чем 20%. Что делать дальше, дело третье. Но суть, надеюсь, понятна.

 

Третий недостаток – это разделение данных независимо от их качественной характеристики. Наверное, правильнее сказать, что это недостаток аналитика, а не метода, но, тем не менее, при наличии такой проблемы АВС-анализ также нужно использовать крайне осторожно. Представим, что мы анализируем продажи большого ассортимента, в который входят несколько торговых марок или разных по потребительским свойствам товаров (кеды, ручки, хлеб, двери, колёса и другое). Если всё это смешать и провести АВС-классификацию, то получится, что в каждой группе будут совсем несопоставимые между собой позиции, не имеющие ничего общего. В этом случае группировка не будет иметь практического смысла. Группы выделяются для того, чтобы ими можно было управлять, а как можно управлять совершенно разными по своим свойствам товарами? Поэтому перед проведением АВС-анализа неплохо бы разделить данные на более-менее похожие по своей природе группы. Здесь такую аналогию можно провести. Имеются 2 арбуза и 3 вишни. Если их сложить, то получится 5... чего? Да ничего. Складывать вишни и арбузы – это идиотизм. Так и в АВС-анализе. В группу А у неразумного аналитика могут попасть и огурцы, и зубная паста. Подобных перемешиваний нужно избегать – засмеют. Хотя для финансового анализа, чисто для определения локомотива, который дает основной оборот, можно и так анализировать. Все зависит от цели.

 

Четвёртый недостаток, который проявляется не всегда, но о нём стоит знать. Возвращаясь к примеру с ассортиментом, следует отметить, что среди товаров могут встречаться не только те, которые плохо продаются, но и те, которые не продаются вообще или которые продаются в убыток. То есть товары, которые наносят урон похуже группы С. Для этого часто добавляют еще одну группу – D. Получается ABCD-анализ. Или вот еще пример. В группу А вошли 40-50% ассортимента, что в абсолютном выражении может быть весьма много. Тогда из группы А можно выделить группу А+, куда войдут самые-самые позиции.

 

Три группы А, В и С не всегда способны качественно разделить данные, поэтому часто добавляют дополнительные группы, не предусмотренные классическим вариантом.

Пятый недостаток относится ко всем методам статистического анализа, так как он связан с качеством, достоверностью и актуальностью данных. Можно было бы и не отмечать этот пункт, но я все-таки остановлюсь и заострю внимание тех, кто при виде аббревиатуры АВС радостно хлопает в ладоши с криком "я знаю, что такое АВС-анализ". При всей простоте далеко не каждый отчётливо осознаёт взаимосвязь между исходными данными и выводами. Общих рекомендаций здесь не будет, так как по этому пункту все сугубо индивидуально. У всех данных могут быть свои проблемы. Но пару примеров об анализе ассортимента товаров и продаж приведу.

 

Как известно, анализ продаж производится за некоторый период. Результаты и выводы переносятся на будущее с предположением, что закономерности и структура продаж не изменятся. В большинстве случаев так и происходит. Однако бывает и так, что в динамике продаж наступают резкие изменения, связанные, например, с сезонностью. Допустим, мы провели АВС-анализ продаж за 1-й квартал года. Получили некоторый результат. В группу С попали товары, которые зимой продаются плохо, но летом наступает всплеск. Если об этом не думать, то по результатам проведенного анализа группа С будет иметь минимальный товарный запас (таковы правила эффективного управления запасами), а когда наступят тёплые деньки, остатки быстро обнулятся. Получается, что данные АВС-анализа за зимний период не будут соответствовать летней АВС-группировке. Ситуация бывает и обратной. Набрали на склад плавок и кремов для загара, а их почему-то зимой никто не хочет покупать. Мораль такова, что структура продаж может быть не постоянна и при проведении АВС-анализа ассортимента этот факт стоит учитывать.

Другой пример с продажами. Часто бывает, что некоторые позиции выпадают из продаж. Это происходит по разным причинам: нет у поставщика, ошибка в закупках и прочее. Тогда получается, что в течение некоторого времени товар не продавался и общий объём продаж будет ниже потенциально возможного. Если это позиция из группы А, то по результатам расчёта она легко может попасть в группу В или даже С. Последствия от подобной ошибки могут быть весьма чувствительны. Проблема решается путём устранения из расчётов тех периодов, когда товар отсутствовал. Это не сложно сделать, перейдя от суммарных продаж к средним продажам за более мелкий период (от годовых продаж к месячным, или от месячных к недельным и тому подобное), не изменяя общую длину анализируемого периода. Тогда периоды с аут-оф-стоком (дефицитом) можно просто убрать из расчёта, оставив только то время, когда товар был на складе и продавался. Структура продаж станет более правдоподобна.

 

В общем, прежде чем проводить анализ, неплохо бы просто задуматься, насколько данные хорошо отражают анализируемый процесс или явление. Этот момент можно смело распространить на все статистические методы.

 

Скорее всего, можно было бы и ещё найти слабые стороны АВС-анализа, но вот то, что мне пока вспомнилось.

 

Таким образом, АВС-анализ обладает большими преимуществами, которые выражаются в простоте, универсальности и легкой реализации.

 

Из отрицательных моментов нужно отметить в первую очередь то, что АВС-группировка по одному показателю далеко не всегда корректно расставляет приоритеты. При использовании многомерного ABC-анализа количество элементов в группе А может быть существенно больше 20%. ABC-анализ не умеет распознавать качество и природу данных, это должен делать аналитик перед проведением расчётов.

 

Вот, пожалуй, и всё, что я хотел рассказать по обозначенной тематике.

 

Езепов Дмитрий

http://upravlenie-zapasami.ru/statii/abc-analiz-preimuschestva-i-nedostatki/

 

 

 

 

 

Комментарии